

The lecture will begin shortly. Please mute your microphone until you are ready to speak.

Introduction to GAMBIT

Anders Kvellestad, University of Oslo

on behalf of the GAMBIT Collaboration

Dartmouth-TRIUMF HEP/Cosmo tools bootcamp — 26/10/17

Comparing BSM theories to data

- Lots of theories for BSM physics
- For each theory, a parameter space of varying phenomenology
- Many different experiments can constrain each theory

2HDM SUSY Composite GUT Higgs
[Your model here]
⊖z∧ - No LHC signals - DM Higgs-like
- Lots of LHC signals - DM Z-like
$ \begin{array}{c} \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $

Comparing BSM theories to data

- Lots of theories for BSM physics
- For each theory, a parameter space of varying phenomenology
- Many different experiments can constrain each theory

Consistently compare theories against **all** available data: **global fits**

Global fits

 Calculate combined likelihood function including observables from collider physics, dark matter, flavor physics, +++

$$\mathcal{L} = \mathcal{L}_{collider} \mathcal{L}_{DM} \mathcal{L}_{flavor} \mathcal{L}_{EWPO} \dots$$

- Use sophisticated scanning techniques to explore likelihood function across the parameter space of the theory
- Test parameter regions in a statistically sensible way not just single points (parameter estimation)
- Test different theories the same way (model comparison)

Need a tool designed to work with different theories, scanners, observables and theory calculators

The Global And Modular BSM Inference Tool

- A new framework for BSM global fits
- Fully open source
- · Modular design: easily extended with
 - new models
 - new likelihoods
 - new theory calculators
 - new scanning algorithms
- Use external codes (backends) as runtime plugins
 - Currently supported:
 - C, C++, Fortran, Mathematica
 - Working on: Python
- Two-level parallellization with MPI and OpenMP
- · Hierarchical model database
- Flexible output streams (ASCII, HDF5, ...)
- Many scanners and backends already included

A. Kvellestad

GAMBIT: The Global And Modular BSM Inference Tool

gambit.hepforge.org

- Fast definition of new datasets and theoretical models
- Plug and play scanning, physics and likelihood packages
- Extensive model database not just SUSY
- Extensive observable/data libraries

ATLAS	F. Bernlochner, A. Buckley, P. Jackson, M. White
LHCb	M. Chrząszcz, N. Serra
Belle-II	F. Bernlochner, P. Jackson
Fermi-LAT	J. Edsjö, G. Martinez, P. Scott
СТА	C. Balázs, T. Bringmann, M. White
\mathbf{CMS}	C. Rogan
IceCube	J. Edsjö, P. Scott
XENON/DARWIN	B. Farmer, R. Trotta
Theory	P. Athron, C. Balázs, S. Bloor, T. Bringmann,
	J. Cornell, J. Edsjö, B. Farmer, A. Fowlie, T. Gonz
	J. Harz, S. Hoof, F. Kahlhoefer, A. Kvellestad,

- F.N. Mahmoudi, J. McKay, A. Raklev, R. Ruiz,
- P. Scott, R. Trotta, A. Vincent, C. Weniger, M. White, S. Wild

- Many statistical and scanning options (Bayesian & frequentist)
- Fast LHC likelihood calculator
- Massively parallel
- Fully open-source

29 Members in 9 Experiments, 12 major theory codes, 11 countries

A. Kvellestad

Core

· Models

Physics modules

GAMBIT

What's in the box?

- ColliderBit: fast LHC sim, Higgs searches, LEP SUSY limits
- DarkBit: relic density, gamma ray signal yields, ID/DD likelihoods
- FlavBit: wide range of flavour observables & likelihoods
- SpecBit: spectrum objects, RGE running
- DecayBit: decay widths
- PrecisionBit: precision BSM tests

Statistics and sampling

• ScannerBit: stats & sampling (Diver, MultiNest, T-Walk, ++)

Backends (external tools)

arXiv:1705.07919 arXiv:1705.07920 arXiv:1705.07933

arXiv:1705.07936

arXiv:1705.07959

arXiv:1705.07908

Code structure

Code structure

- Basic building blocks: module functions
- A physics module: a collection of module functions related to the same physics topic
- Each module function has a single capability (what it calculates)
- A module function can have dependencies on the results of other module functions
- A module function can declare which models it can work with
- GAMBIT determines which module functions should be run in which order for a given scan (dependency resolution)

```
void function_name(double &result)
{
    ...
    result = ... // something useful
}
```


Dependency resolution

Hierarchical model database

- A **model** is a collection of named parameters
- Models can be **related** (e.g. MSSM9 is a parent of MSSM7)
- Points in child model automatically translated to ancestor models
- Ensures maximum reuse of calculations and minimizes risk of mistakes

Scan illustration

GAMBIT YAML files

GAMBIT steering files

Functionality/configuration demos and minimal examples

spartan.yaml spartan_CMSSM.yaml	Simplest example of using GAMBIT: a toy-model MultiNest scan Simple example of using GAMBIT in a random scan of CMSSM params	
ColliderBit_CMSSM.yaml ColliderBit_ExternalModel.yaml	LEP and LHC direct search observables in a MultiNest scan of the CMSSM LHC likelihood demo on a single point of a Pythia external model	
DarkBit_MSSM7.yaml DarkBit_SingletDM.yaml	DM constraint demo with a MultiNest scan of the MSSM7 model DarkBit demo with a simple of MultiNest scan of Singlet DM model	
DecayBit_MSSM20.yaml DecayBit_SingletDM.yaml	Test of DecayBit, printing out a decay table for MSSM20 at a single model point Test of DecayBit, printing out a decay table for Singlet DM at 10 model points	
FlavBit_CMSSM.yaml	Flavour physics fits to CMSSM with Diver scan	
PrecisionBit_MSSM20.yaml	Precision EW observable demo on a single MSSM20 point	
ScannerBit.yaml	Example of configuring the scanner system	
SpecBit_MSSM.yaml SpecBit_vacuum_stability.yaml	Single-point test of mass spectrum generation in MSSM sub-models 50x50 grid scan of vacuum stability in [mT,mH]	
Physics model scan configurations		
CMSSM.yaml Diver scan of CMSSM modelMSSM7.yaml Diver scan of MSSM7 modelNUHM1.yaml Diver scan of NUHM1 modelNUHM2.yaml Diver scan of NUHM2 modelSingletDM.yaml Diver scan of Singlet DM modelWC.yaml MultiNest scan of flavour physics Wilson Coeffs		
Config fragments containing parameters for inclusion in other steering files		
StandardModel_SLHA2_defaults.yaml StandardModel_SLHA2_scan.yaml		

15

Today:

 YAML steering files, GAMBIT diagnostics system, perform a simple 2D fit, plot results

Tomorrow (Jonathan Cornell):

 Introduction to the ColliderBit and DarkBit modules, implementing a new model and calculating DM likelihoods, run a scan of this model

A first GAMBIT example

A simple and quick 2D Wilson coefficient fit

Files on Indico:

- Installation instructions: Installation_before_tutorial.txt (Hopefully you have already done this...)
- **Tutorial steps**: tutorial_commands.txt
- Input files for GAMBIT and pippi: WC_lite.yaml, WC_lite.pip

References

- Web: gambit.hepforge.org
- GAMBIT manual: <u>arxiv.org/pdf/1705.07908.pdf</u>
- FlavBit manual: <u>arxiv.org/pdf/1705.07933.pdf</u>
- ScannerBit manual: <u>arxiv.org/pdf/1705.07959.pdf</u>

Effective field theory

A. Kvellestad

The least global global fit ever...

2D Wilson coefficient fit

$$\Delta C_x \equiv C_{x,BSM} - C_{x,SM}$$

• Free parameters: ΔC_7 Re_DeltaC7 ΔC_{10} Re_DeltaC10

• Observables: $BR(B \to X_s \gamma)$ $BR(B_d \to \mu^+ \mu^-)$ $BR(B_s \to \mu^+ \mu^-)$

Follow the steps in tutorial_commands.txt

Results – Diver scan

Results – Diver scan

M

Results – MultiNest scan

25

Results – MultiNest scan

AM

A. Kvellestad

AM