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The lecture will begin shortly.  Please mute your 
microphone until you are ready to speak. 
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Comparing BSM theories to data

• Lots of theories for BSM physics


• For each theory, a parameter space 
of varying phenomenology


• Many different experiments can 
constrain each theory
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Comparing BSM theories to data

• Lots of theories for BSM physics


• For each theory, a parameter space 
of varying phenomenology


• Many different experiments can 
constrain each theory

Consistently compare theories 
against all available data: global fits
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Global fits
• Calculate combined likelihood function including observables 

from collider physics, dark matter, flavor physics, +++


 

• Use sophisticated scanning techniques to explore likelihood 
function across the parameter space of the theory


• Test parameter regions in a statistically sensible way — not just 
single points (parameter estimation) 

• Test different theories the same way (model comparison) 

Need a tool designed to work with different theories, scanners, 
observables and theory calculators 

L = LcolliderLDMLflavorLEWPO . . .
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GAMBIT 
The Global And Modular BSM Inference Tool

• A new framework for BSM global fits


• Fully open source 

• Modular design: easily extended with  
— new models 
— new likelihoods 
— new theory calculators 
— new scanning algorithms


• Use external codes (backends) as runtime plugins 
— Currently supported:  
     C, C++, Fortran, Mathematica 
— Working on: Python


• Two-level parallellization with MPI and OpenMP


• Hierarchical model database  

• Flexible output streams (ASCII, HDF5, …)


• Many scanners and backends already included 

gambit.hepforge.org
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GAMBIT 
First physics results

• Scalar singlet dark matter  
arXiv:1705.07931  

• GUT-scale MSSM  
CMSSM, NUHM1, NUHM2 
arXiv:1705.07935  
 

• Weak-scale MSSM7 
arXiv:1705.07917
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Fig. 2: Left: The profile likelihood ratio in the CMSSM, for m
0

and m
1/2

(top) and tan — and A
0

(bottom), with explicit 68%
and 95% CL contour lines drawn in white, and the best fit point indicated by a star. Right: Colour-coding shows the mechanisms
active in models within the 95% CL contour for avoiding thermal overproduction of neutralino dark matter, through either
chargino co-annihilation, resonant annihilation via the A/H funnel, or stop co-annihilation. Other potential mechanisms (e.g. stau
co-annihilation) are not present, as they do not lie within the 95% CL contour.

We now see that relaxing the relic density con-
straint to an upper limit opens up a much richer set of
phenomenologically-viable scenarios, with lighter Hig-
gsino or mixed Higgino-bino LSPs. From the perspective
of global fits, treating the relic density as an upper bound
is a conservative approach, and allows us to test whether
the preference for heavy spectra found in recent studies
[115, 146, 308] persists even when a greater variety of
light LSPs is permitted.

The right panel of Fig. 1 shows that at 95% CL,
all of the identified annihilation mechanisms (stop co-
annihilation, A/H-funnel and chargino co-annihilation)
permit solutions where the measured relic density is fully
accounted for, as well as scenarios where only a very

small fraction of the DM relic abundance is explained
in the CMSSM. The fit does not demonstrate any clear
preference for the relic density to be under-abundant or
very close to the measured value. Looking at the top
of this plot, we indeed see the established picture for
chargino co-annihilation discussed above, where a pure
Higgsino DM candidate should have a mass of around
1 TeV to fit the observed relic density.

In Fig. 2, we show 2D CMSSM joint profile likeli-
hoods for m

0

and m
1/2

, as well as for tan — and A
0

.
Here the plots include both positive and negative µ, and
are again coloured by relic density mechanism. We see
a large region of high likelihood at large m

0

and m
1/2

,
consisting of overlapping chargino co-annihilation and
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Fig. 3: Left: Joint profile likelihoods in the µ–M
1

(top) and M
2

–m
˜f planes (bottom). Stars indicate the point of highest likelihood

in each plain, and white contours correspond to the 1‡ and 2‡ CL regions with respect to the best-fit point. Right: Coloured regions
indicating in which parts of the 2‡ best-fit region di�erent co-annihilation and funnel mechanisms contribute to keeping the relic
density low. The best-fit point in each region is indicated by a star with the corresponding colour.

of Fig. 3). Because the MSSM7 employs a common
sfermion soft-mass parameter m2

˜f
at the input scale

(Q = 1 TeV in our case), mass splittings among di�er-
ent sfermions are mostly generated by varying amounts
of mixing. In comparison, the contribution from RGE
running from Q = 1 TeV to Q = M

SUSY

, which splits
m2

˜f
into individual soft masses, is generally subdomi-

nant.
In the tree-level stop mass matrix the o�-

diagonal element is vyt(Au3 sin — ≠ µ cos —), while it
is vyb,· (Ad3 cos — ≠ µ sin —) in the sbottom and stau
mass matrices, where yt,b,· are the fermion Yukawa cou-
plings and v ¥ 246 GeV. Because increased left-right
mixing reduces the mass of the lighter of the two mass
eigenstates, the large top Yukawa ensures that t̃

1

is the

lightest sfermion across most of the allowed parameter
space (including for models that exhibit sbottom co-
annihilation). With 3 Æ tan — Æ 70 the terms Au3 sin —
(stop) and µ sin — (sbottom and stau) dominate the
sfermion mixing in large regions of parameter space.
The dependence on large µ to obtain a sbottom mass
significantly lower than the mass set by the common
m

˜f parameter explains why the sbottom co-annihilation
region does not extend as far to small µ as the stop co-
annihilation region in Fig. 3. Also, since yb ¥ 2.5y· , the
lightest stau remains heavier than the lightest sbottom
in the regions of parameter space with large mixing for
the down-type sfermions, which explains the absence
of any region dominated by stau co-annihilation in our
results.
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Fig. 3: Left: Joint profile likelihoods in the µ–M
1

(top) and M
2

–m
˜f planes (bottom). Stars indicate the point of highest likelihood

in each plain, and white contours correspond to the 1‡ and 2‡ CL regions with respect to the best-fit point. Right: Coloured regions
indicating in which parts of the 2‡ best-fit region di�erent co-annihilation and funnel mechanisms contribute to keeping the relic
density low. The best-fit point in each region is indicated by a star with the corresponding colour.

of Fig. 3). Because the MSSM7 employs a common
sfermion soft-mass parameter m2

˜f
at the input scale

(Q = 1 TeV in our case), mass splittings among di�er-
ent sfermions are mostly generated by varying amounts
of mixing. In comparison, the contribution from RGE
running from Q = 1 TeV to Q = M

SUSY

, which splits
m2

˜f
into individual soft masses, is generally subdomi-

nant.
In the tree-level stop mass matrix the o�-

diagonal element is vyt(Au3 sin — ≠ µ cos —), while it
is vyb,· (Ad3 cos — ≠ µ sin —) in the sbottom and stau
mass matrices, where yt,b,· are the fermion Yukawa cou-
plings and v ¥ 246 GeV. Because increased left-right
mixing reduces the mass of the lighter of the two mass
eigenstates, the large top Yukawa ensures that t̃

1

is the

lightest sfermion across most of the allowed parameter
space (including for models that exhibit sbottom co-
annihilation). With 3 Æ tan — Æ 70 the terms Au3 sin —
(stop) and µ sin — (sbottom and stau) dominate the
sfermion mixing in large regions of parameter space.
The dependence on large µ to obtain a sbottom mass
significantly lower than the mass set by the common
m

˜f parameter explains why the sbottom co-annihilation
region does not extend as far to small µ as the stop co-
annihilation region in Fig. 3. Also, since yb ¥ 2.5y· , the
lightest stau remains heavier than the lightest sbottom
in the regions of parameter space with large mixing for
the down-type sfermions, which explains the absence
of any region dominated by stau co-annihilation in our
results.
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Fig. 5: Marginalised posterior distributions of the scalar singlet parameters, in low-mass (left) and full-range (right) scans. White
contours mark out 1‡ and 2‡ credible regions in the posterior. The posterior mean of each scan is shown as a white circle. Grey
contours show the profile likelihood 1‡ and 2‡ confidence regions, for comparison. The best-fit (maximum likelihood) point is
indicated with a grey star.

Mode Statistic Relic density condition ⁄hS mS (GeV) œSh2 log(L) ∆ ln L
Low mass Best fit œSh2 . œDM h2 6.5 ◊ 10≠4 62.51 0.0179 4.566 0.107

Best fit œSh2 ≥ œDM h2 2.9 ◊ 10≠4 62.27 0.1129 4.431 0.242
Posterior mean œSh2 . œDM h2 4.3 ◊ 10≠3 60.28

High mass Best fit œSh2 . œDM h2 9.9 132.5 1.2 ◊ 10≠8 4.540 0.133
Best fit œSh2 ≥ œDM h2 3.1 9.790 ◊ 103 0.1131 4.311 0.362
Posterior mean œSh2 . œDM h2 3.0 1867

Table 5: Details of the best-fit points and posterior means, di�erentiated into the two main likelihood modes. Best fits are given
for the case where the singlet relic density is within 1‡ of its observed value, and for the case where singlet particles may be a
sub-dominant component of dark matter. We omit the values of the 13 nuisance parameters, as they do not deviate significantly
from the central values of their associated likelihood functions.

parameters to which points in this region are rather
sensitive, such as the mass of the Higgs. The penalty is
su�ciently severe that this region drops outside the 2‡
credible region in the mS-⁄hS plane. We therefore focus
only on the high mass modes in the righthand panel of
Fig. 5, where we show the posterior from the full-range
scan.

Because it is restricted to the resonance region, the
low-range scan (left panel of Fig. 5) shows the expected
relative posterior across this region. The fact that the
resonance is so strongly disfavoured in the full-range
posterior scan is an indication of its heavy fine-tuning,
a property that is naturally penalised in a Bayesian
analysis. This mode of the posterior accounts for less
than 0.4% of the total posterior mass, indicating that it
is disfavoured at almost 3‡ confidence.

For the sake of understanding the prior dependence
of our posteriors, we also carried out a single scan of the
full parameter range with flat instead of log priors on

mS and ⁄hS, using MultiNest with the same full-range
settings as in Table 3. Unsurprisingly, the resulting
posterior is strongly driven by this (inappropriate) choice
of prior, concentrating all posterior mass into the corner
of the parameter space at large ⁄hS and mS. The 1‡
region lies above ⁄hS ≥ 3, mS ≥ 3 TeV, and the 2‡

region above ⁄hS ≥ 1, mS ≥ 1 TeV.

4.4 Vacuum stability

Finally, we check vacuum stability for some interesting
benchmark points.

So far, our calculations have not required any renor-
malisation group evolution or explicit computation of
pole masses. We have simply taken the tree-level expres-
sion for mS (Eq. 2) to indicate the pole mass, and varied
it and ⁄hS as free parameters. To test vacuum stability
using MS renormalisation group equations (RGEs), we
need to instead use these parameters along with the
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Fig. 1: Profile likelihoods for the scalar singlet model, in the plane of the singlet parameters ⁄hS and mS. Contour lines mark out
the 1‡ and 2‡ confidence regions. The left panel shows the resonance region at low singlet mass, whereas the right panel shows the
full parameter range scanned. The best-fit (maximum likelihood) point is indicated with a white star, and edges of the allowed
regions corresponding to solutions where S constitutes 100% of dark matter are indicated in orange.

Fig. 2: Profile likelihoods for the scalar singlet model, in various planes of observable quantities against the singlet mass. Contour
lines mark out the 1‡ and 2‡ confidence regions. Greyed regions indicate values of observables that are inaccessible to our scans, as
they correspond to non-perturbative couplings ⁄hS > 10, which lie outside the region of our scan. Note that the exact boundary
of this region moves with the values of the nuisance parameters, but we have simply plotted this for fixed central values of the
nuisances, as a guide. The best-fit (maximum likelihood) point is indicated with a white star, and edges of the allowed regions
corresponding to solutions where S constitutes 100% of dark matter are indicated in orange. Left: late-time thermal average of the
cross-section times relative velocity; Centre: spin-independent WIMP-nucleon cross-section; Right: relic density.

the allowed regions we have found. These edges are indi-
cated with orange annotations in Figs. 1 and 2. At high
singlet masses, the value of the late-time thermal cross-
section (Eq. 4 for T = 0) corresponding to this strip is
equal to the canonical ‘thermal’ scale of 10≠26 cm3 s≠1.
At low masses, this strip runs along the lower edge of
the resonance ‘triangle’ only, as indirect detection rules
out models with œSh2 = 0.119 near the vertical edge
(at mS = 62 GeV).

In Fig. 2, we also show in grey the regions corre-
sponding to Higgs-portal couplings above our maximum

considered value, ⁄hS = 10, in order to give some rough
idea of the area of these plots that we have not scanned
(and the area that should almost certainly be excluded
on perturbativity grounds were we to do so). We note
that at large mS, the highest-likelihood regions are all
at quite large coupling values, where the annihilation
cross-section is so high, and the resulting relic density is
so low, that all direct and indirect signals are essentially
absent – but where perturbativity of the model begins
to become an issue.
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GAMBIT 
What’s in the box?

Core 
• Models


Physics modules 
• ColliderBit: fast LHC sim, Higgs searches, LEP SUSY limits 

• DarkBit: relic density, gamma ray signal yields, ID/DD likelihoods

• FlavBit: wide range of flavour observables & likelihoods

• SpecBit: spectrum objects, RGE running

• DecayBit: decay widths

• PrecisionBit: precision BSM tests


Statistics and sampling 
• ScannerBit: stats & sampling (Diver, MultiNest, T-Walk, ++) 


Backends (external tools)

arXiv:1705.07908


arXiv:1705.07919

arXiv:1705.07920

arXiv:1705.07933


arXiv:1705.07936


arXiv:1705.07959


}
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GAMBIT 
Code structureGAMBIT Structure

Core

ColliderBit DarkBit FlavBit PrecisionBit SpecBit

ScannerBitModels

Physics Modules

Backends: 
FlexibleSUSY, SPheno, FeynHiggs, 

HiggsBounds, HiggsSignals, PYTHIA, 
Delphes, BuckFast*, SUSYHit, DarkSUSY, 

micrOMEGAs, nuLike, DDCalc*, 
GamLike*, SuperISO, gm2Calc

*New!

DecayBit

Scanners: 
MultiNest, 

Diver*, 
GreAT, 
twalk*

10
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GAMBIT 
Code structure

• Basic building blocks: module functions 

• A physics module: a collection of module 
functions related to the same physics topic


• Each module function has a single capability 
(what it calculates) 


• A module function can have dependencies 
on the results of other module functions


• A module function can declare which 
models it can work with 

• GAMBIT determines which module functions 
should be run in which order for a given scan 
(dependency resolution) 

11
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GAMBIT 
Dependency resolution40

CMSSM_parameters
Type: ModelParameters

Function: primary_parameters
Module: CMSSM

LibFirst_1_1_init
Type: void

Function: LibFirst_1_1_init
Module: BackendIniBit

nevents_postcuts
Type: int

Function: predicted_events
Module: ExampleBit_B

Example_lnL_B
Type: double

Function: example_lnL
Module: ExampleBit_B

LibFortran_1_0_init
Type: void

Function: LibFortran_1_0_init
Module: BackendIniBit

function_pointer
Type: fptr

Function: function_pointer_retriever
Module: ExampleBit_A

particle_id
Type: std::string

Function: particle_identity
Module: ExampleBit_B

ptr_arr_tests
Type: int

Function: ptrArrTester
Module: ExampleBit_B

test_BE_Array
Type: double

Function: Backend_array_test
Module: ExampleBit_A

test_vector
Type: std::vector<double>

Function: exampleVec
Module: ExampleBit_B

nevents
Type: double

Function: nevents_pred
Module: ExampleBit_A

nevents
Type: int

Function: nevents_pred_rounded
Module: ExampleBit_A

eventLoopManagement
Type: void

Function: eventLoopManager
Module: ExampleBit_A

event
Type: float

Function: exampleEventGen
Module: ExampleBit_A

event
Type: int

Function: exampleCut
Module: ExampleBit_A

eventAccumulation
Type: int

Function: eventAccumulator
Module: ExampleBit_A

Example_lnL_A
Type: double

Function: nevents_like
Module: ExampleBit_A

xsection
Type: double

Function: test_sigma
Module: ExampleBit_A

G A M B I T

Fig. 5: An example dependency tree generated in the initial-
isation stage of a GAMBIT scan. Each block corresponds to a
single module function, with the red text indicating its capa-

bility. Arrows indicate resolution of dependencies of di�erent
module functions with the results of others. The functions se-
lected by the dependency resolver to provide the observables
and likelihoods requested in the ObsLikes section of the scan’s
input YAML file are shaded in green. Module functions shown
shaded in purple are nested module functions. These run
in an automatically-parallelised loop managed by a loop man-

ager function, which is shown shaded in blue. This example
is included in the GAMBIT distribution as spartan.yaml; see
Sec. 12.1 for more details. Figures like this can be generated
for any scan by following the instructions provided after calling
GAMBIT with the -d switch; see Sec. 6.1 for details.

6. Adopt the Rules specified in the initialisation file (see
Sec. 6.5), removing non-matching module functions
from the list.

7. If exactly one module function is left on the list,
resolve the quantity requested by the target function
with the capability provided by that module function.
This automatically connects the pipe of the target
function to the result of the resolving function.

8. If the resolving function was not already activated
for the scan, activate it and add its dependencies to
the dependency queue (with the resolving function
as new target function).

9. Resolve backend requirements, as described below.
10. Resolve module function options, as described below.
11. Repeat from step 3 until the dependency queue is

empty.

7.2 Evaluation order

After building up the dependency tree of module func-
tions, the dependency resolver determines the initial
runtime ordering of its chosen module functions. An
obvious minimal requirement is that if the output of

module function A is required by module function B, A
is evaluated before B. We do this by topologically sort-
ing the directed dependency tree, using graph-theoretic
methods from the Boost Graph Library18.

In most cases, the evaluation order of the observables
and likelihoods listed in the ObsLikes section (Sec. 6.4)
remains unconstrained by the topological sorting. The
dependency resolver first orders the likelihoods by es-
timating the expected evaluation time for each one,
including all dependent module functions, along with
the probability that each likelihood will invalidate a
point. (A point may be invalidated if the likelihood is
extremely close to zero, the point is unphysical, etc.)
These estimates are based on the runtime and invalida-
tion frequency of the previously calculated points, and
updated on the fly during the scan. The dependency
resolver then sorts the evaluation order of likelihoods
such that the expected average time until a point is in-
validated is minimised. In practice this means that, for
instance, the relatively fast checks for consistency of a
model with physicality constraints, such as perturbativ-
ity and the absence of tachyons, would be automatically
performed before the often time-consuming evaluation
of collider constraints. This gives a significant e�ciency
gain in a large scan, because expensive likelihoods are
not even evaluated for points found to be invalid or
su�ciently unlikely on the basis of faster likelihoods.

Observables not associated with likelihoods used to
drive a scan (cf. 6.4) are always calculated after the
likelihood components, as they do not have the power to
completely invalidate a model point. Invalid observable
calculations can still be flagged, but they will not trigger
the termination of all remaining calculations for that
point in the way that an invalid likelihood component
will.

7.3 Resolution of backend requirements

Resolving backend requirements is in some sense a lot
easier than resolving module function dependencies, in
that backend requirements cannot themselves have ex-
plicit backend requirements or dependencies, so there is
no equivalent of the dependency tree to build. However,
the ability to specify groups of backend functions from
which only one requirement must be resolved, along
with rules that apply to them (Sec. 3.1.3), especially
the declaration that backend requirements that share a
certain tag must be resolved from the same backend —
without necessarily specifying which backend — makes
backend resolution a uniquely challenging problem.

18http://www.boost.org/doc/libs/1_63_0/libs/graph/doc/

12



G AM B I TA. Kvellestad

GAMBIT 
Hierarchical model database

G A M B I T

Hierarchical Model Database (arXiv:1705.07908)

Models are defined by their parameters and relations to each
other
Models can inherit from (be subspaces of) parent models
Points in child models can be automatically translated to
ancestor models
Friend models also allowed (cross-family translation)
Model dependence of every function/observable is tracked
=∆ maximum safety, maximum reuse

NormalDist

StandardModel_Higgs_running StandardModel_Higgs

MSSM63atQ

MSSM30atQ

MSSM63atMGUT

MSSM25atQ

MSSM24atQ

MSSM20atQ

StandardModel_SLHA2

MSSM19atQ MSSM16atQ

MSSM30atMGUT

NUHM2 NUHM1 CMSSM mSUGRA

SingletDM_running SingletDM

nuclear_params_fnq nuclear_params_sigma0_sigmal nuclear_params_sigmas_sigmal MSSM11atQ

MSSM15atQ

MSSM10atQ

MSSM10batQ

MSSM9atQ

MSSM7atQ

MSSM10catQ

Halo_gNFW
Halo_gNFW_rho0

Halo_gNFW_rhos
Halo_Einasto

Halo_Einasto_rho0

Halo_Einasto_rhos

WC

Pat Scott – Sep 13 2017 – TOOLS::Corfu GAMBIT: The Global and Modular BSM Inference Tool

• A model is a collection of named parameters


• Models can be related (e.g. MSSM9 is a parent of MSSM7)


• Points in child model automatically translated to ancestor models


• Ensures maximum reuse of calculations and minimizes risk of mistakes

13
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GAMBIT 
Scan illustration 5

G A M B I T

Fig. 1: A schematic representation of the basic elements of a GAMBIT scan. The user provides a YAML input file (see www.yaml.org),
which chooses a model to scan and some observables or likelihoods to calculate. The requested model ” and its ancestor models (see
text for definition) — and – are activated. All model-dependent module and backend functions/variables are tested for compatibility
with the activated models; incompatible functions are disabled (C2 in the example). Module functions are identified that can provide
the requested quantities (A2 and B1 in the example), and other module functions are identified to fulfil their dependencies. More are
identified to fulfil those functions’ dependencies until all dependencies are filled. Backend functions and variables are found that can
fulfil the backend requirements of all chosen module functions. The Core determines the correct module function evaluation order. It
passes the information on to ScannerBit, which chooses parameter combinations to sample, running the module functions in order
for each parameter combination. The requested quantities are output by the printer system for each parameter combination tested.

2.1 Modularity

2.1.1 Physics modules, observables and likelihoods

The first version of GAMBIT ships with seven modules:
six physics modules and the scanning module ScannerBit.
The physics modules are:

ColliderBit calculates particle collider observables and
likelihoods. It includes detailed implementations of
LEP, ATLAS and CMS searches for new particle
production, including extensive parallel Monte Carlo
simulation and detector simulation. For a detailed
description see [67].

FlavBit calculates observables and likelihoods from
flavour physics, in particular B, D and K meson
decays as observed by LHCb, including angular ob-
servables and correlations. See [68].

DarkBit calculates DM observables and likelihoods,
from the relic abundance to direct and indirect
searches. It includes an on-the-fly cascade decay
spectral yield calculator, and a flexible, model-
independent relic density calculator capable of mix-
ing and matching aspects from existing backends.
See [69].

SpecBit interfaces to one of a number of possible exter-
nal spectrum generators in order to determine pole
masses and running parameters, and provides them
to the rest of GAMBIT in a standardised spectrum
container format. It also carries out vacuum stability
calculations and perturbativity checks. See [70].

DecayBit calculates decay rates of all relevant particles
in the BSM theory under investigation, and contains
decay data for all SM particles. See [70].

PrecisionBit calculates model-dependent precision cor-
rections to masses, couplings and other observables,

14
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GAMBIT 
YAML files

15



G AM B I TA. Kvellestad

GAMBIT 
Tutorial

Today: 

• YAML steering files, GAMBIT diagnostics system, perform a simple 
2D fit, plot results 
 

Tomorrow (Jonathan Cornell):


• Introduction to the ColliderBit and DarkBit modules, implementing a 
new model and calculating DM likelihoods, run a scan of this model 

16
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A first GAMBIT 
example
A simple and quick 2D Wilson coefficient fit
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• Installation instructions: Installation_before_tutorial.txt 
(Hopefully you have already done this…)


• Tutorial steps: tutorial_commands.txt


• Input files for GAMBIT and pippi: WC_lite.yaml, WC_lite.pip 

Material

Files on Indico:

18



G AM B I TA. Kvellestad

References

• Web: gambit.hepforge.org


• GAMBIT manual: arxiv.org/pdf/1705.07908.pdf


• FlavBit manual: arxiv.org/pdf/1705.07933.pdf


• ScannerBit manual: arxiv.org/pdf/1705.07959.pdf
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Effective field theoryEffective Field Theory
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The least global global fit ever…

• 2D Wilson coefficient fit 
 

• Free parameters:          
 

• Observables:  
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Follow the steps in tutorial_commands.txt
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Results — Diver scan
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Results — Diver scan
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Results — MultiNest scan
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Results — MultiNest scan
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