namespace Gambit::DecayBit::SM_Z

[No description available]

Classes

Name
classGambit::DecayBit::SM_Z::TwoLoop

Attributes

Name
const doublemu
const doublesigma
constexpr struct Gambit::DecayBit::SM_Z::@0gamma_inv
<ahref=" http://pdglive.lbl.gov/BranchingRatio.action?desig=9&parCode=S044 “>PDG measurement of invisible width of (Z) boson in GeV
const doublemh_OS
const doublemt_OS
const doubleMZ_OS
const doublealpha_s_MSbar_MZ
const doubledelta_alpha_OS
constexpr struct Gambit::DecayBit::SM_Z::@1hat
The central values of nuisances from eq. 13.
constexpr intkRows
constexpr intkCols
constexpr double[kRows][kCols]table_5
Coefficient data in Table 5 with MeV converted to GeV.
constexpr double[kRows]table_6
Data in Table 6, though re-arranged to match columns in Table 5 with MeV converted to GeV.

Attributes Documentation

variable mu

const double mu = 499.0e-3;

variable sigma

const double sigma = 1.5e-3;

variable gamma_inv

constexpr struct Gambit::DecayBit::SM_Z::@0 gamma_inv;

<ahref=” http://pdglive.lbl.gov/BranchingRatio.action?desig=9&parCode=S044 “>PDG measurement of invisible width of (Z) boson in GeV

variable mh_OS

const double mh_OS = 125.7;

variable mt_OS

const double mt_OS = 173.2;

variable MZ_OS

const double MZ_OS = 91.1876;

variable alpha_s_MSbar_MZ

const double alpha_s_MSbar_MZ = 0.1184;

variable delta_alpha_OS

const double delta_alpha_OS = 0.059;

variable hat

constexpr struct Gambit::DecayBit::SM_Z::@1 hat;

The central values of nuisances from eq. 13.

variable kRows

constexpr int kRows = 12;

variable kCols

constexpr int kCols = 9;

variable table_5

constexpr double[kRows][kCols] table_5 = {
        {83.983e-3, -0.061e-3, 0.810e-3, -0.096e-3, -0.01e-3, 0.25e-3, -1.1e-3, 286e-3, 0.001e-3},
        {83.793e-3, -0.060e-3, 0.810e-3, -0.095e-3, -0.01e-3, 0.25e-3, -1.1e-3, 285.e-3, 0.001e-3},
        {167.176e-3, -0.071e-3, 1.26e-3, -0.19e-3, -0.02e-3, 0.36e-3, -0.1e-3, 504.e-3, 0.001e-3},
        {299.993e-3, -0.38e-3, 4.08e-3, 14.27e-3, 1.6e-3, 1.8e-3, -11.1e-3, 1253.e-3, 0.002e-3},
        {299.916e-3, -0.38e-3, 4.08e-3, 14.27e-3, 1.6e-3, 1.8e-3, -11.1e-3, 1253.e-3, 0.002e-3},
        {382.828e-3, -0.39e-3, 3.83e-3, 10.20e-3, -2.4e-3, 0.67e-3, -10.1e-3, 1470.e-3, 0.002e-3},
        {375.889e-3, -0.36e-3, -2.14e-3, 10.53e-3, -2.4e-3, 1.2e-3, -10.1e-3, 1459.e-3, 0.006e-3},
        {2494.74e-3, -2.3e-3, 19.9e-3, 58.61e-3, -4.0e-3, 8.0e-3, -56.0e-3, 9273.e-3, 0.012e-3},
        {20751.6, -7.8, -37., 732.3, -44, 5.5, -358, 11696., 0.1 },
        {172.22, -0.031, 1.0, 2.3, 1.3, 0.38, -1.2, 37., 0.01},
        {215.85, 0.029, -2.92, -1.32, -0.84, 0.032, 0.72, -18., 0.01},
        {41489.6, 1.6, 60.0, -579.6, 38., 7.3, 85., 0.1},
      };

Coefficient data in Table 5 with MeV converted to GeV.

variable table_6

constexpr double[kRows] table_6 =
        {0.018e-3, 0.018e-3, 0.016e-3, 0.11e-3, 0.11e-3, 0.08e-3, 0.18e-3, 0.4e-3, 6.e-3, 5.e-5, 1.e-4, 6.};

Data in Table 6, though re-arranged to match columns in Table 5 with MeV converted to GeV.

The final entry isn’t in the table and instead comes from the text below eq. 16.


Updated on 2024-07-18 at 13:53:31 +0000