file shared_includes/nulike_1_0.hpp
[No description available] More…
Detailed Description
Author: Pat Scott (patscott@physics.mcgill.ca)
Date:
- 2013 May
- 2014 March
- 2015 Aug
Frontend header for the nulike backend.
Compile-time registration of available functions and variables from this backend.
Authors (add name and date if you modify):
Source code
// GAMBIT: Global and Modular BSM Inference Tool
// *********************************************
/// \file
///
/// Frontend header for the nulike backend.
///
/// Compile-time registration of available
/// functions and variables from this backend.
///
/// *********************************************
///
/// Authors (add name and date if you modify):
///
/// \author Pat Scott
/// (patscott@physics.mcgill.ca)
/// \date 2013 May
/// \date 2014 March
/// \date 2015 Aug
///
/// *********************************************
// Import functions
BE_FUNCTION(nulike_init, void, (const char&, const char&, const char&, const char&, const char&, double&, bool&, bool&), "nulike_init_", "nulike_init")
BE_FUNCTION(nulike_bounds, void, (const char&, const double&, const double&, nuyield_function_pointer, double&, double&, int&,
double&, double&, const int&, const double&, const int&, const bool&, const double&, const double&, void*&, const bool&),
"nulike_bounds", "nubounds")
BE_FUNCTION(nulike_lnpiln, double, (const int&, const double&, const double&, const double&), "nulike_lnpiln_", "lnlike_marg_poisson_lognormal_error")
BE_FUNCTION(nulike_lnpin, double, (const int&, const double&, const double&, const double&), "nulike_lnpin_", "lnlike_marg_poisson_gaussian_error")
// Arguments for the last two above are:
// int nobs number of observed events
// double npred1 number of predicted events with no uncertainty
// double npred2 number of predicted events with an associated prediction uncertainty due to e.g. efficiency error
// double error fractional uncertainty on prediction npred2
// Note that the split into npred1 and npred2 is just for distinguishing which part of the
// predicition has the fractional uncertainty associated with it. If the uncertainty is on
// the entire prediction, set npred1 = 0 and npred2 = total predicted events.
Updated on 2024-07-18 at 13:53:35 +0000