file priors/gaussian.hpp
[No description available] More…
Namespaces
Name |
---|
Gambit TODO: see if we can use this one: |
Gambit::Priors |
Classes
Name | |
---|---|
class | Gambit::Priors::Gaussian Multi-dimensional Gaussian prior. |
Detailed Description
Author:
- Ben Farmer (benjamin.farmer@monash.edu.au)
- Gregory Martinez (gregory.david.martinez@gmail.com)
- Andrew Fowlie (andrew.j.fowlie@qq.com)
Date:
- 2013 Dec
- Feb 2014
- August 2020
Multivariate Gaussian prior
Authors (add name and date if you modify):
Source code
// GAMBIT: Global and Modular BSM Inference Tool
// *********************************************
/// \file
///
/// Multivariate Gaussian prior
///
/// *********************************************
///
/// Authors (add name and date if you modify):
///
/// \author Ben Farmer
/// (benjamin.farmer@monash.edu.au)
/// \date 2013 Dec
///
/// \author Gregory Martinez
/// (gregory.david.martinez@gmail.com)
/// \date Feb 2014
///
/// \author Andrew Fowlie
/// (andrew.j.fowlie@qq.com)
/// \date August 2020
///
/// *********************************************
#ifndef __PRIOR_GAUSSIAN_HPP__
#define __PRIOR_GAUSSIAN_HPP__
#include <algorithm>
#include <cmath>
#include <string>
#include <unordered_map>
#include <vector>
#include "gambit/ScannerBit/cholesky.hpp"
#include "gambit/ScannerBit/priors.hpp"
#include "gambit/Utils/yaml_options.hpp"
#include <boost/math/special_functions/erf.hpp>
namespace Gambit
{
namespace Priors
{
/**
* @brief Multi-dimensional Gaussian prior
*
* Defined by a covariance matrix and mean.
*
* If the covariance matrix is diagonal, it may instead be specified by the square-roots of its
* diagonal entries, denoted \f$\sigma\f$.
*/
class Gaussian : public BasePrior
{
private:
std::vector <double> mu;
mutable Cholesky col;
public:
// Constructor defined in gaussian.cpp
Gaussian(const std::vector<std::string>&, const Options&);
/** @brief Transformation from unit interval to the Gaussian */
void transform(hyper_cube_ref<double> unitpars, std::unordered_map<std::string, double> &outputMap) const override
{
std::vector<double> vec(unitpars.size());
for (int i = 0, end = vec.size(); i < end; ++i)
vec[i] = M_SQRT2 * boost::math::erf_inv(2. * unitpars[i] - 1.);
col.ElMult(vec);
auto v_it = vec.begin();
auto m_it = mu.begin();
for (auto str_it = param_names.begin(), str_end = param_names.end(); str_it != str_end; ++str_it)
{
outputMap[*str_it] = *(v_it++) + *(m_it++);
}
}
void inverse_transform(const std::unordered_map<std::string, double> &physical, hyper_cube_ref<double> unit) const override
{
// subtract mean
std::vector<double> central;
for (int i = 0, n = this->size(); i < n; i++)
{
central.push_back(physical.at(param_names[i]) - mu[i]);
}
// invert rotation by Cholesky matrix
std::vector<double> rotated = col.invElMult(central);
// now diagonal; invert Gaussian CDF
for (int i = 0, end = rotated.size(); i < end; ++i)
unit[i] = 0.5 * (boost::math::erf(rotated[i] / M_SQRT2) + 1.0);
}
double log_prior_density(const std::unordered_map<std::string, double> &physical) const
{
static double norm = 0.5 * std::log(2. * M_PI * std::pow(col.DetSqrt(), 2));
std::vector<double> vec(param_names.size());
for (int i = 0, end = param_names.size(); i < end; ++i)
vec[i] = physical.at(param_names[i]);
return -0.5 * col.Square(vec, mu) - norm;
}
};
LOAD_PRIOR(gaussian, Gaussian)
} // namespace Priors
} // namespace Gambit
#endif // __PRIOR_GAUSSIAN_HPP__
Updated on 2024-07-18 at 13:53:32 +0000