file src/DarkBit/src/VectorSingletDM.cpp
[No description available] More…
Namespaces
Name |
---|
Gambit TODO: see if we can use this one: |
Gambit::DarkBit |
Classes
Name | |
---|---|
class | Gambit::DarkBit::VectorSingletDM |
Defines
Name | |
---|---|
getSMmass(Name, spinX2) | |
addParticle(Name, Mass, spinX2) |
Detailed Description
Author:
- Ankit Beniwal (ankit.beniwal@adelaide.edu.au)
- Sanjay Bloor (sanjay.bloor12@imperial.ac.uk)
- Pat Scott (p.scott@imperial.ac.uk)
Date:
- Oct 2016
- Jun 2017
- Mar 2018
- Nov 2017
- Sep 2018
Implementation of VectorSingletDM routines.
Authors (add name and date if you modify):
Macros Documentation
define getSMmass
#define getSMmass(
Name,
spinX2
)
catalog.particleProperties.insert(std::pair<string, TH_ParticleProperty> \
(Name , TH_ParticleProperty(SM.get(Par::Pole_Mass,Name), spinX2)));
define addParticle
#define addParticle(
Name,
Mass,
spinX2
)
catalog.particleProperties.insert(std::pair<string, TH_ParticleProperty> \
(Name , TH_ParticleProperty(Mass, spinX2)));
Source code
// GAMBIT: Global and Modular BSM Inference Tool
// *********************************************
/// \file
///
/// Implementation of VectorSingletDM routines.
///
/// *********************************************
///
/// Authors (add name and date if you modify):
///
/// \author Ankit Beniwal
/// (ankit.beniwal@adelaide.edu.au)
/// \date Oct 2016
/// \date Jun 2017
/// \date Mar 2018
///
/// \author Sanjay Bloor
/// (sanjay.bloor12@imperial.ac.uk)
/// \date Nov 2017
///
/// \author Pat Scott
/// (p.scott@imperial.ac.uk)
/// \date Sep 2018
///
/// *********************************************
#include "gambit/Elements/gambit_module_headers.hpp"
#include "gambit/Elements/virtual_higgs.hpp"
#include "gambit/DarkBit/DarkBit_rollcall.hpp"
#include "gambit/Utils/ascii_table_reader.hpp"
#include "boost/make_shared.hpp"
#include "gambit/DarkBit/DarkBit_utils.hpp"
namespace Gambit
{
namespace DarkBit
{
class VectorSingletDM
{
public:
/// Initialize VectorSingletDM object (branching ratios etc)
VectorSingletDM(
TH_ProcessCatalog* const catalog,
double gammaH,
double vev,
double alpha_strong)
: Gamma_mh(gammaH), v0 (vev),
alpha_s (alpha_strong)
{
mh = catalog->getParticleProperty("h0_1").mass;
mb = catalog->getParticleProperty("d_3").mass;
mc = catalog->getParticleProperty("u_2").mass;
mtau = catalog->getParticleProperty("e-_3").mass;
mt = catalog->getParticleProperty("u_3").mass;
mZ0 = catalog->getParticleProperty("Z0").mass;
mW = catalog->getParticleProperty("W+").mass;
};
~VectorSingletDM() {}
/// Helper function (Breit-Wigner)
double Dh2 (double s)
{
return 1/((s-mh*mh)*(s-mh*mh)+mh*mh*Gamma_mh*Gamma_mh);
}
/*! \brief Returns <sigma v> in cm3/s for given channel, velocity and
* model parameters.
*
* channel: bb, tautau, mumu, ss, cc, tt, gg, gammagamma, Zgamma, WW,
* ZZ, hh
*/
double sv(std::string channel, double lambda, double mass, double v)
{
// Note: Valid for mass > 45 GeV
double s = 4*mass*mass/(1-v*v/4);
double sqrt_s = sqrt(s);
if ( sqrt_s < 90 )
{
piped_invalid_point.request(
"VectorSingletDM sigmav called with sqrt_s < 90 GeV.");
return 0;
}
if ( channel == "hh" )
{
if ( sqrt_s > mh*2 )
{
return sv_hh(lambda, mass, v);
}
else return 0;
}
if ( channel == "bb" and sqrt_s < mb*2 ) return 0;
if ( channel == "cc" and sqrt_s < mc*2 ) return 0;
if ( channel == "tautau" and sqrt_s < mtau*2 ) return 0;
if ( channel == "tt" and sqrt_s < mt*2 ) return 0;
if ( channel == "ZZ" and sqrt_s < mZ0*2) return 0;
if ( channel == "WW" and sqrt_s < mW*2) return 0;
if ( sqrt_s < 300 )
{
double br = virtual_SMHiggs_widths(channel,sqrt_s);
double Gamma_s = virtual_SMHiggs_widths("Gamma",sqrt_s);
double GeV2tocm3s1 = gev2cm2*s2cm;
double y = s/pow(mass, 2);
// Explicitly close channel for off-shell top quarks
if ( channel == "tt" and sqrt_s < mt*2) return 0;
double res = 2*lambda*lambda*v0*v0*(1-y/3 + pow(y,2)/12)/3/
sqrt_s*Dh2(s)*Gamma_s*GeV2tocm3s1*br;
return res;
}
else
{
if ( channel == "bb" ) return sv_ff(lambda, mass, v, mb, true);
if ( channel == "cc" ) return sv_ff(lambda, mass, v, mc, true);
if ( channel == "tautau" ) return sv_ff(lambda, mass, v, mtau, false);
if ( channel == "tt" ) return sv_ff(lambda, mass, v, mt, true);
if ( channel == "ZZ" ) return sv_ZZ(lambda, mass, v);
if ( channel == "WW" ) return sv_WW(lambda, mass, v);
}
return 0;
}
// Annihilation into W bosons.
double sv_WW(double lambda, double mass, double v)
{
double s = 4*mass*mass/(1-v*v/4);
double x = pow(mW,2)/s;
double y = s/pow(mass, 2);
double GeV2tocm3s1 = gev2cm2*s2cm;
return pow(lambda,2)*s/24/M_PI*sqrt(1-4*x)*(1-y/3 + pow(y,2)/12)*
Dh2(s)*(1-4*x+12*pow(x,2))*GeV2tocm3s1;
}
// Annihilation into Z bosons.
double sv_ZZ(double lambda, double mass, double v)
{
double s = 4*mass*mass/(1-v*v/4);
double x = pow(mZ0,2)/s;
double y = s/pow(mass, 2);
double GeV2tocm3s1 = gev2cm2*s2cm;
return pow(lambda,2)*s/48/M_PI*sqrt(1-4*x)*(1-y/3 + pow(y,2)/12)*
Dh2(s)*(1-4*x+12*pow(x,2))*GeV2tocm3s1;
}
// Annihilation into fermions
double sv_ff(
double lambda, double mass, double v, double mf, bool is_quark)
{
double s = 4*mass*mass/(1-v*v/4);
double vf = sqrt(1-4*pow(mf,2)/s);
double y = s/pow(mass, 2);
double Xf = 1;
if ( is_quark ) Xf = 3 *
(1+(3/2*log(pow(mf,2)/s)+9/4)*4*alpha_s/3/M_PI);
double GeV2tocm3s1 = gev2cm2*s2cm;
return pow(lambda,2)*(1-y/3 + pow(y,2)/12)*
pow(mf,2)/12/M_PI*Xf*pow(vf,3) * Dh2(s) *GeV2tocm3s1;
}
/// Annihilation into hh
double sv_hh(double lambda, double mass, double v)
{
// Hardcode lower limit for velocity to avoid nan results.
v = std::max(v, 1e-6);
double GeV2tocm3s1 = gev2cm2*s2cm;
double s = 4*mass*mass/(1-v*v/4); // v is relative velocity
double xV = mass*mass/s;
double xH = mh*mh/s;
double xG = Gamma_mh*mh/s;
double beta = (s - 2*pow(mh,2))/sqrt((s - 4*pow(mh,2))*(s - 4*pow(mass,2)));
double vH = sqrt(1-4*xH);
return GeV2tocm3s1*(vH*pow(lambda,2)*pow(s,-3)*pow(xV,-4)*pow(pow(xG,2) + pow(-1 + xH,2),-1)*
((4*lambda*s*xV*(1 - 6*xV + xH*(2 + 4*xV))*pow(v0,2)*(1 + xH + pow(xG,2) - 2*pow(xH,2))*(xV - 4*xH*xV + pow(xH,2)) +
4*(1 + 4*xV*(-1 + 3*xV))*pow(s,2)*(xV - 4*xH*xV + pow(xH,2))*(pow(xG,2) + pow(1 + 2*xH,2))*pow(xV,2) +
pow(lambda,2)*pow(v0,4)*(pow(xG,2) + pow(-1 + xH,2))*(xV + (1 + 12*xV*(-1 + 4*xV))*pow(xH,2) + (4 - 32*xV)*pow(xH,3) + 6*pow(xH,4) - 64*xH*pow(xV,3) +
96*pow(xV,4)))*pow(xV - 4*xH*xV + pow(xH,2),-1) - 8*beta*lambda*(-1 + 4*xH)*atanh(1/beta)*pow(v0,2)*pow(1 - 2*xH,-1)*
(2*s*(-1 + 2*xH)*xV*((-1 + xH)*(1 + 2*xH) - pow(xG,2))*(2*xV*pow(-1 + xH,2) + pow(xH,2) - 4*(1 + 2*xH)*pow(xV,2) + 24*pow(xV,3)) -
lambda*pow(v0,2)*(pow(xG,2) + pow(-1 + xH,2))*(-8*xV*pow(xH,3) + 3*pow(xH,4) - pow(xH,2)*(1 + 8*pow(xV,2)) + 4*xH*(xV + 8*pow(xV,3)) -
2*xV*(1 - 2*xV + 24*pow(xV,3))))*pow(1 - 6*xH + 8*pow(xH,2),-1)))/(2304*M_PI);
}
private:
double Gamma_mh, mh, v0, alpha_s, mb, mc, mtau, mt, mZ0, mW;
};
void DarkMatter_ID_VectorSingletDM(std::string& result) { result = "V"; }
void DarkMatterConj_ID_VectorSingletDM(std::string& result) { result = "V"; }
/// Direct detection couplings for the VectorSingletDM_Z2 model.
void DD_couplings_VectorSingletDM_Z2(DM_nucleon_couplings &result)
{
using namespace Pipes::DD_couplings_VectorSingletDM_Z2;
const Spectrum& spec = *Dep::VectorSingletDM_Z2_spectrum;
const SubSpectrum& he = spec.get_HE();
double mass = spec.get(Par::Pole_Mass,"V");
double lambda = he.get(Par::dimensionless,"lambda_hV");
double mh = spec.get(Par::Pole_Mass,"h0_1");
// Expressions taken from Cline et al. (2013, PRD 88:055025, arXiv:1306.4710)
double fp = 2./9. + 7./9.*(*Param["fpu"] + *Param["fpd"] + *Param["fps"]);
double fn = 2./9. + 7./9.*(*Param["fnu"] + *Param["fnd"] + *Param["fns"]);
result.gps = lambda*fp*m_proton/pow(mh,2)/mass/2;
result.gns = lambda*fn*m_neutron/pow(mh,2)/mass/2;
result.gpa = 0; // Only SI cross-section
result.gna = 0;
logger() << LogTags::debug << "Vector DM DD couplings:" << std::endl;
logger() << " gps = " << result.gps << std::endl;
logger() << " gns = " << result.gns << std::endl;
logger() << " gpa = " << result.gpa << std::endl;
logger() << " gna = " << result.gna << EOM;
} // function DD_couplings_VectorSingletDM_Z2
/// Set up process catalog for the VectorSingletDM_Z2 model.
void TH_ProcessCatalog_VectorSingletDM_Z2(DarkBit::TH_ProcessCatalog &result)
{
using namespace Pipes::TH_ProcessCatalog_VectorSingletDM_Z2;
using std::vector;
using std::string;
// Initialize empty catalog
TH_ProcessCatalog catalog;
TH_Process process_ann("V", "V");
// Explicitly state that Vector DM is self-conjugate
process_ann.isSelfConj = true;
///////////////////////////////////////
// Import particle masses and couplings
///////////////////////////////////////
// Convenience macros
#define getSMmass(Name, spinX2) \
catalog.particleProperties.insert(std::pair<string, TH_ParticleProperty> \
(Name , TH_ParticleProperty(SM.get(Par::Pole_Mass,Name), spinX2)));
#define addParticle(Name, Mass, spinX2) \
catalog.particleProperties.insert(std::pair<string, TH_ParticleProperty> \
(Name , TH_ParticleProperty(Mass, spinX2)));
// Import Spectrum objects
const Spectrum& spec = *Dep::VectorSingletDM_Z2_spectrum;
const SubSpectrum& he = spec.get_HE();
const SubSpectrum& SM = spec.get_LE();
const SMInputs& SMI = spec.get_SMInputs();
// Import couplings
double lambda = he.get(Par::dimensionless,"lambda_hV");
double v = he.get(Par::mass1,"vev");
double alpha_s = SMI.alphaS; // alpha_s(mZ)^MSbar
// Get SM pole masses
getSMmass("e-_1", 1)
getSMmass("e+_1", 1)
getSMmass("e-_2", 1)
getSMmass("e+_2", 1)
getSMmass("e-_3", 1)
getSMmass("e+_3", 1)
getSMmass("Z0", 2)
getSMmass("W+", 2)
getSMmass("W-", 2)
getSMmass("g", 2)
getSMmass("gamma", 2)
getSMmass("u_3", 1)
getSMmass("ubar_3", 1)
getSMmass("d_3", 1)
getSMmass("dbar_3", 1)
// Pole masses not available for the light quarks.
addParticle("u_1" , SMI.mU, 1) // mu(2 GeV)^MS-bar, not pole mass
addParticle("ubar_1", SMI.mU, 1) // mu(2 GeV)^MS-bar, not pole mass
addParticle("d_1" , SMI.mD, 1) // md(2 GeV)^MS-bar, not pole mass
addParticle("dbar_1", SMI.mD, 1) // md(2 GeV)^MS-bar, not pole mass
addParticle("u_2" , SMI.mCmC,1) // mc(mc)^MS-bar, not pole mass
addParticle("ubar_2", SMI.mCmC,1) // mc(mc)^MS-bar, not pole mass
addParticle("d_2" , SMI.mS, 1) // ms(2 GeV)^MS-bar, not pole mass
addParticle("dbar_2", SMI.mS, 1) // ms(2 GeV)^MS-bar, not pole mass
// Masses for neutrino flavour eigenstates. Set to zero.
// (presently not required)
addParticle("nu_e", 0.0, 1)
addParticle("nubar_e", 0.0, 1)
addParticle("nu_mu", 0.0, 1)
addParticle("nubar_mu", 0.0, 1)
addParticle("nu_tau", 0.0, 1)
addParticle("nubar_tau",0.0, 1)
// Higgs-sector masses
double mV = spec.get(Par::Pole_Mass,"V");
double mH = spec.get(Par::Pole_Mass,"h0_1");
addParticle("V", mV, 2) // Vector DM
addParticle("h0_1", mH, 0) // SM-like Higgs
// Meson, baryon and nuclear masses
addParticle("pi0", meson_masses.pi0, 0)
addParticle("pi+", meson_masses.pi_plus, 0)
addParticle("pi-", meson_masses.pi_minus, 0)
addParticle("eta", meson_masses.eta, 0)
addParticle("rho0", meson_masses.rho0, 1)
addParticle("rho+", meson_masses.rho_plus, 1)
addParticle("rho-", meson_masses.rho_minus, 1)
addParticle("omega", meson_masses.omega, 1)
addParticle("p", m_proton, 1)
addParticle("pbar", m_proton, 1)
addParticle("n", m_neutron, 1)
addParticle("nbar", m_neutron, 1)
addParticle("D", m_deuteron, 2)
addParticle("Dbar", m_deuteron, 2)
// Get rid of convenience macros
#undef getSMmass
#undef addParticle
/////////////////////////////
// Import Decay information
/////////////////////////////
// Import decay table from DecayBit
const DecayTable* tbl = &(*Dep::decay_rates);
// Save Higgs width for later
double gammaH = tbl->at("h0_1").width_in_GeV;
// Set of imported decays
std::set<string> importedDecays;
// Minimum branching ratio to include
double minBranching = 0;
// Import relevant decays (only Higgs and subsequent decays)
using DarkBit_utils::ImportDecays;
// Notes: Virtual Higgs decays into offshell W+W- final states are not
// imported. All other channels are correspondingly rescaled. Decay
// into VV final states is accounted for, leading to zero photons.
ImportDecays("h0_1", catalog, importedDecays, tbl, minBranching,
daFunk::vec<std::string>("Z0", "W+", "W-", "e+_2", "e-_2", "e+_3", "e-_3"));
// Instantiate new VectorSingletDM_Z2 object
auto vectorDM = boost::make_shared<VectorSingletDM>(&catalog, gammaH, v, alpha_s);
// Populate annihilation channel list and add thresholds to threshold
// list.
// (remark: the lowest threshold is here = 2*mV, whereas in DS-internal
// conventions, this lowest threshold is not listed)
process_ann.resonances_thresholds.threshold_energy.push_back(2*mV);
auto channel =
daFunk::vec<string>("bb", "WW", "cc", "tautau", "ZZ", "tt", "hh");
auto p1 =
daFunk::vec<string>("d_3", "W+", "u_2", "e+_3", "Z0", "u_3", "h0_1");
auto p2 =
daFunk::vec<string>("dbar_3","W-", "ubar_2","e-_3", "Z0", "ubar_3","h0_1");
{
for ( unsigned int i = 0; i < channel.size(); i++ )
{
double mtot_final =
catalog.getParticleProperty(p1[i]).mass +
catalog.getParticleProperty(p2[i]).mass;
// Include final states that are open for T~m/20
if ( mV*2 > mtot_final*0.5 )
{
daFunk::Funk kinematicFunction = daFunk::funcM(vectorDM,
&VectorSingletDM::sv, channel[i], lambda, mV, daFunk::var("v"));
TH_Channel new_channel(
daFunk::vec<string>(p1[i], p2[i]), kinematicFunction
);
process_ann.channelList.push_back(new_channel);
}
if ( mV*2 > mtot_final )
{
process_ann.resonances_thresholds.threshold_energy.
push_back(mtot_final);
}
}
}
// Populate resonance list
if ( mH >= mV*2 ) process_ann.resonances_thresholds.resonances.
push_back(TH_Resonance(mH, gammaH));
catalog.processList.push_back(process_ann);
// Validate
catalog.validate();
result = catalog;
} // function TH_ProcessCatalog_VectorSingletDM_Z2
}
}
Updated on 2024-07-18 at 13:53:34 +0000